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Abstract

Constructions and nonexistence conditions for multi-dimensional Golay comple-
mentary array pairs are reviewed. A construction for a d-dimensional Golay array
pair from a (d+ 1)-dimensional Golay array pair is given. This is used to explain and
expand previously known constructive and nonexistence results in the binary case.

Keywords array, binary, complementary, complex-valued, construction, Golay, multi-
dimensional, nonexistence, sequence

1 Introduction

We define a length s sequence to be a one-dimensional array A = (A[i]) of complex-valued
entries for which

A[i] = 0 if i < 0 or i ≥ s.

Usually the sequence entries {A[i] | 0 ≤ i < s} are constrained to lie in a small finite
set S called the sequence alphabet. If S = {1, ξ, ξ2, . . . , ξH−1} for some primitive H-
th root of unity ξ then A is an H-phase sequence. Particular cases of interest are the
binary case H = 2, for which S = {1,−1}, and the quaternary case H = 4, for which
S = {1,

√
−1,−1,−

√
−1}. The ternary case S = {1, 0,−1} is not an H-phase sequence

but has been much studied recently. The aperiodic autocorrelation function of a length s
sequence A = (A[i]) is given by

CA(u) :=
∑
i

A[i]A[i+ u] for integer u,

where bar represents complex conjugation.
Since the 1950s, digital communications engineers have sought to identify binary se-

quences for which the absolute values of the aperiodic autocorrelation function are collec-
tively small, for application in synchronisation, pulse compression and especially radar [27].
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From this point of view an ideal length s binary sequence A, known as a Barker sequence,
is one for which

|CA(u)| ≤ 1 for all u 6= 0.

The only non-trivial lengths s for which Barker sequences are known to exist are 2, 3, 4,
5, 7, 11 and 13, and it has been conjectured since at least 1963 [26] that no other sequence
lengths are possible (see [18] for historical background and recent results).

Since it is apparent that the ideal behaviour given by a Barker sequence is unlikely to
be achieved beyond length 13, researchers have explored several variations of the Barker
condition for binary sequences. These include upper bounding the peak sidelobe level
maxu>0 |CA(u)| by an integer greater than 1 (see [20] for a summary of known results),
or seeking to maximise the merit factor s2/

(
2

∑
u>0[CA(u)]2

)
(see [18] for a survey). A

different approach, which we consider here, is to require that the sum of the aperiodic
autocorrelation functions of a pair of length s sequences A and B exhibits the ideal be-
haviour

CA(u) + CB(u) = 0 for all u 6= 0.

Such a pair of sequences is called a Golay complementary sequence pair (often abbreviated
to Golay sequence pair) of length s, after Golay [14], [15]; Shapiro [24] independently
studied the same object.

The initial investigation of Golay sequence pairs was restricted to the binary case.
Binary Golay sequence pairs are known for lengths 2 and 10 [16], and 26 [17]. Infinitely
many lengths of binary Golay sequence pairs can therefore be obtained from the following
composition construction:

Theorem 1 (Turyn [28]). If there exist binary Golay sequence pairs of length s1 and s2
then there exists a binary Golay sequence pair of length s1s2.

Corollary 2. There exists a binary Golay sequence pair of length 2a10b26c for all integer
a, b, c ≥ 0.

On the nonexistence side we have the following two results; the original proof of The-
orem 4 in [9] was elegantly shortened in [10]:

Proposition 3 (Golay [16]). If there exists a binary Golay sequence pair of length s > 1
then s is even.

Proof. We give a short alternative proof to that in [16]. For a binary sequence A of
length s, it is well-known (see, for example, [25]) that

CA(u) + CA(u− s) ≡ s (mod 4) for all integer u satisfying 0 ≤ u < s. (1)

Let A and B form a binary Golay sequence pair of length s > 1. Add the congruence (1)
for A to the congruence (1) for B, and set u = 1 to obtain 0 ≡ 2s (mod 4).

Theorem 4 (Eliahou, Kervaire and Saffari [9], [10]). If there exists a binary Golay se-
quence pair of length s then s has no prime factor congruent to 3 modulo 4.
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Proposition 3 and Theorem 4 imply all known theoretical results on the nonexistence
of binary Golay sequence pairs, including that s must be the sum of two squares [16]. But
the combination of Corollary 2, Proposition 3, and Theorem 4 still leaves infinitely many
values of s for which the existence of a binary Golay sequence pair of length s is undecided.
Borwein and Ferguson [1] extended previous exhaustive computer search results to show
that all such undecided cases with s < 100 give nonexistence.

Subsequently to Golay’s work, several authors considered larger alphabets, including
ternary [3], [5], [13]; quaternary [4]; 2h-phase [6]; H-phase for even H [23]; and the case
|A[i]| = 1 for 0 ≤ i < s [2]. Fiedler, Jedwab and Parker [11] recently gave a framework of
constructions for H-phase sequences for even H, from which all previously known 2h-phase
Golay sequence pairs of length 2m can be obtained in explicit algebraic normal form.

We have described one approach to the apparent scarcity of Barker sequences, namely
to replace a single sequence by a pair of sequences. An alternative approach is to generalise
A from one dimension to multiple dimensions in the hope of a richer existence pattern.
We define an s1 × · · · × sr array to be an r-dimensional array A = (A[i1, . . . , ir]) of
complex-valued entries for which

A[i1, . . . , ir] = 0 if, for any k ∈ {1, 2, . . . , r}, ik < 0 or ik ≥ sk.

Binary, ternary, quaternary and other special cases of arrays are defined as for sequences.
The aperiodic autocorrelation function of an s1×· · ·× sr array A = (A[i1, . . . , ir]) is given
by

CA(u1, . . . , ur) :=
∑
i1

. . .
∑
ir

A[i1, . . . , ir]A[i1 + u1, . . . , ir + ur] for integer u1, . . . , ur.

(2)
By analogy with the one-dimensional case, an s1 × · · · × sr Barker array is defined to

be an s1 × · · · × sr binary array for which

|CA(u1, . . . , ur)| ≤ 1 for all (u1, . . . , ur) 6= (0, . . . , 0).

The array
[

1 1
1 −1

]
is a 2× 2 Barker array, but there are no other possible sizes for an

r-dimensional Barker array with r > 1:

Theorem 5 (Davis, Jedwab and Smith [7]). There are no s1 × s2 Barker arrays having
s1, s2 > 1 except when s1 = s2 = 2.

Theorem 6 (Jedwab and Parker [19]). There are no s1 × · · · × sr Barker arrays having
r > 2 and each sk > 1.

We have now described two variations of a Barker sequence: a Golay sequence pair,
and a Barker array. The first variation produces an infinite family of binary sequence
pairs with length of the form 2a10b26c, while the second produces no new binary examples
except for size 2 × 2. It is natural to combine these two variations by seeking a Golay
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array pair. Accordingly, we define an s1 × · · · × sr Golay (complementary) array pair to
be a pair of s1 × · · · × sr arrays A and B for which

CA(u1, . . . , ur) + CB(u1, . . . , ur) = 0 for all (u1, . . . , ur) 6= (0, . . . , 0).

A central question is for what sizes s1 × · · · × sr such a pair exists. A further question,
considered in [12], is how many different Golay array pairs of a given size exist.

In 1978 Ohyama, Honda and Tsujiuchi [22] proposed the use of a two-dimensional
binary Golay array pair for X-ray and gamma ray coded aperture imaging. They gave a
construction to increase the size of such a pair from s1 × s2 to 2s1 × s2, and by recursive
application to a 2 × 1 starting pair constructed a 2a × 2b binary Golay array pair for all
integer a, b ≥ 0.

In 1985 Lüke [21] indicated (without proof) a generalisation of Theorem 1 to multi-
dimensional arrays, whose recursive application leads to:

Theorem 7 (Lüke [21]). If there exist binary Golay sequence pairs of length s1, . . . , sr
then there exists an s1 × · · · × sr binary Golay array pair.

By Corollary 2 we deduce:

Corollary 8. There exists an s1 × · · · × sr binary Golay array pair, where each sk takes
the form 2ak10bk26ck for integer ak, bk, ck ≥ 0.

For an s1×· · ·×sr arrayA = (A[i1, . . . , ir]), writeA∗ := (A[s1 − 1− i1, . . . , sr − 1− ir]).
In 1992 Dymond [8] conducted a detailed study of (mostly binary) Golay array pairs,
showing that Golay’s concatentation, interleaving, and composition constructions for bi-
nary Golay sequence pairs [16] can all be generalised to multiple dimensions. She also
proved an important generalisation of Theorem 1 to the construction of multi-dimensional
arrays:

Theorem 9 (Dymond [8, Theorem 4.24]). Let ⊗ represent the Kronecker product of
arrays. Suppose that A and B form an s1 × · · · × sr binary Golay array pair, and that C
and D form a t1 × · · · × tr binary Golay array pair (where any of the sk and tk can take
the value 1). Then the arrays

A⊗
(
C +D

2

)
+ B ⊗

(
C − D

2

)
,

A⊗
(
C∗ −D∗

2

)
− B ⊗

(
C∗ +D∗

2

)
form an s1t1 × · · · × srtr binary Golay array pair.

Using Theorem 9 we can construct a binary Golay array pair of size s1×· · ·×sr−1×sr
from binary array Golay pairs of size s1 × · · · × sr−1 × 1 and 1× · · · × 1× sr, from which
Theorem 7 can be recovered by repeated application. But although Theorem 9 is a more
general construction than Theorem 7, it does not produce new sizes of binary Golay array
pairs beyond those given in Corollary 8.

4



On the nonexistence side, Dymond [8] proved that if an s1 × · · · × sr binary Golay
array pair exists then

∏r
i=1 si is an even sum of two squares (generalising Golay’s results

for the binary sequence pair case [16]). She ruled out the existence of a binary Golay array
pair of size 2× 5 by exhaustive search, and could find no examples of size 3× 6, 2× 9 or
2× 3× 3 by extensive (though non-exhaustive) search [8, p. 143].

We will use our main result, Theorem 11, to explain many of these previously known
constructive and nonexistence results.

2 Reduction of the dimension of a Golay array pair

In [19] the authors observed that a (d+ 1)-dimensional binary array can be mapped to a
d-dimensional binary array so that the aperiodic autocorrelation functions of both arrays
are closely related. The proof given in [19] does not make use of the condition that the
array is binary, and holds without modification for arrays of complex-valued entries:

Lemma 10 (Jedwab and Parker [19, Lemma 2.1]). For integer r ≥ 0, let A = (A[i, j, i1, . . . , ir])
be an s× t×s1×· · ·×sr array. Define the st×s1×· · ·×sr array ψ(A) = (B[m, i1, . . . , ir])
by

B[ti+j, i1, . . . , ir] := A[i, j, i1, . . . , ir] for 0 ≤ i < s, 0 ≤ j < t, 0 ≤ ik < sk (k = 1, . . . , r).

Then, for all integer u, v, u1, . . . , ur, where 0 ≤ v < t,

Cψ(A)(tu+ v, u1, . . . , ur) = CA(u, v, u1, . . . , ur) + CA(u+ 1, v − t, u1, . . . , ur).

Lemma 10 expresses each aperiodic autocorrelation Cψ(A) as the sum of exactly two
terms CA (one or both of which might be trivially zero, according to the values of u and v).
We now use this result to show that the existence of a (d + 1)-dimensional Golay array
pair implies the existence of a d-dimensional Golay array pair.

Theorem 11. For integer r ≥ 0, suppose that A and B form an s× t×s1×· · ·×sr Golay
array pair over an alphabet S. Then ψ(A) and ψ(B), as defined in Lemma 10, form an
st× s1 × · · · × sr Golay array pair over S.

Proof. Fix integers u, v, u1, . . . , ur, where 0 ≤ v < t and (u, v, u1, . . . , ur) 6= (0, . . . , 0). By
Lemma 10,

Cψ(A)(tu+ v, u1, . . . , ur) + Cψ(B)(tu+ v, u1, . . . , ur)
= CA(u, v, u1, . . . , ur) + CA(u+ 1, v − t, u1, . . . , ur) +

CB(u, v, u1, . . . , ur) + CB(u+ 1, v − t, u1, . . . , ur)
= 0,

since A and B form a Golay array pair. Therefore ψ(A) and ψ(B) form an st×s1×· · ·×sr
Golay array pair, and are defined over the same alphabet as A and B.

Repeated application of Theorem 11 gives:
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Corollary 12. If there exists an s1 × · · · × sr Golay array pair then there exists a Golay
sequence pair of length

∏r
k=1 sk over the same alphabet.

Theorem 11 also allows an alternative formulation of Theorem 9 that is conceptually
simpler: specialise Theorem 9 to the case where A and B have size s1 × · · · × sr × 1 ×
· · · × 1 (with v 1’s), and C and D have size 1 × · · · × 1 × t1 × · · · × tv (with r 1’s). The
Kronecker product then simplifies to the tensor product, giving a constructed array of size
s1 × · · · × sr × t1 × · · · × tv. We can recover the original form of Theorem 9 from this
simpler formulation by setting v = r and then applying Theorem 11.

3 Application to the binary case

Theorem 11 and Corollary 12 are of particular interest in the binary case, where we have:

Proposition 13. Up to reordering of dimensions, an s1×· · ·×sr binary Golay array pair
with 1 <

∏r
k=1 sk < 100 exists for precisely the following sizes, together with the derived

sizes arising from Theorem 11:

2, 2× 2, 2× 2× 2, 2× 2× 2× 2, 2× 2× 2× 2× 2, 2× 2× 2× 2× 2× 2,
10, 2× 10, 2× 2× 10, 2× 2× 2× 10,
26, 2× 26.

Proof. All the listed sizes of binary Golay array pairs exist, by Corollary 8. We now show
that, up to reordering of dimensions, no other sizes satisfying the stated conditions exist.

Suppose there exists an s1× · · · × sr binary Golay array pair with 1 <
∏r
k=1 sk < 100.

By Corollary 12, a binary Golay sequence pair of length
∏r
k=1 sk exists. The computer

search results of [1] then force

r∏
k=1

sk ∈ {2, 4, 8, 16, 32, 64, 10, 20, 40, 80, 26, 52}.

By Theorem 11, it is now sufficient to rule out the existence of binary Golay array pairs
of the following sizes:

2× 5, 4× 5, 8× 5, 16× 5, 2× 13, 4× 13

(since, for example, the nonexistence of a binary Golay array pair of size 16 × 5 implies
the nonexistence of binary Golay array pairs of size 2×2×2×2×5, 2×2×4×5, 2×8×5,
and 4× 4× 5). Since there exists a binary Golay sequence pair of length 2, by Theorem 9
it is then sufficient to rule out the existence of binary Golay array pairs of just two sizes:

16× 5 and 4× 13.

We describe an efficient computer procedure by which this ruling out can be done for
size 16× 5; the procedure for size 4× 13 is similar. If A and B form a binary Golay array
pair of size 16 × 5 then, by Theorem 11, ψ(A) and ψ(B) form a binary Golay sequence
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pair of length 80 (where the mapping ψ is defined in Lemma 10). Now the exact number
and structure of binary Golay sequence pairs of length 80 is known from [1], so we can
apply the inverse map ψ−1 to all such sequence pairs and test the resulting array pairs of
size 16× 5 for the Golay property. Since we find that no such array pair is a Golay array
pair, we conclude that there is no 16× 5 binary Golay array pair.

In particular, Proposition 13 confirms Dymond’s computer search results [8] that es-
tablished the nonexistence of a binary Golay array pair of size 2 × 5 and suggested the
nonexistence of binary Golay array pairs of size 3× 6, 2× 9 and 2× 3× 3 (see Section 1).

The proof of Proposition 13 demonstrates that the fundamental object of interest is a
Golay array pair having the largest possible number of dimensions, and that other Golay
array pairs arising from Theorem 11 should be regarded as derived objects. For example,
the existence of a 2 × 2 × 10 binary Golay array pair given by Corollary 8 implies the
existence of binary Golay array pairs of size 2 × 20, 4 × 10, and 40. Similarly, if the
nonexistence of a binary Golay array pair of size 4× 25 were established, it would imply
the nonexistence of binary Golay array pairs of size 2× 2× 25, 4× 5× 5, and 2× 2× 5× 5.

The following two nonexistence results generalise Proposition 3 and Theorem 4 from
binary sequences to multi-dimensional binary arrays. Both results could be established by
adapting the original proofs to multiple dimensions, but follow directly as a consequence
of Corollary 12:

Corollary 14. If there exists an s1 × · · · × sr binary Golay array pair then
∏r
k=1 sk = 1

or
∏r
k=1 sk is even.

Proof. Combine Proposition 3 and Corollary 12.

Corollary 15. If there exists an s1 × · · · × sr binary Golay array pair then no sk has a
prime factor congruent to 3 modulo 4.

Proof. Combine Theorem 4 and Corollary 12.

Corollary 14 was previously established by Dymond [8]. If an s1×· · ·×sr binary Golay
array pair exists then Corollary 15 implies that

∏r
k=1 sk is the sum of two squares, as was

also previously established by Dymond [8].

4 Conclusion

We conclude by summarising the results of the paper, and presenting some open questions.
Historically, the primary theoretical and practical motivation for the generalisation

from Golay sequence pairs to Golay array pairs was to enlarge the set of available objects.
Comparison of Corollaries 2 and 8 demonstrates some success for this approach in the
binary case, and prompts the question:

1. Does the existence of an s1× · · · × sr binary Golay array pair imply the existence of
a binary Golay sequence pair of length sk for each k?
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A subsidiary question suggested by the proof of Proposition 13 is:

2. Does the existence of an s1×· · ·×sr binary Golay array pair with each sk > 1 imply
that each sk is even?

Golay array pairs are not just a possible source of further examples: we have shown
that a Golay array pair having the largest possible number of dimensions is in fact a
fundamental object of interest, from which lower-dimensional Golay array pairs can be
derived via Theorem 11.

In the quaternary case, Craigen, Holzmann and Kharaghani [4] showed by computer
search that a length s Golay sequence pair exists for 1 < s ≤ 22 precisely when

s ∈ {2, 3, 4, 5, 6, 8, 10, 11, 12, 13, 16, 18, 20, 22}.

We ask:

3. Does an array viewpoint shed light on the existence pattern for quaternary Golay
sequence pairs, and in particular the conjectures in [4]?

The focus of this paper is the set of sizes for which a Golay array pair can exist,
especially in the binary case. A further paper [12] considers the explicit construction,
structure, and enumeration of Golay array pairs of a given size s1 × · · · × sr, especially
when

∏r
k=1 sk is a power of 2.
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